design of one way slab

Design of one way slab, design procedure and a problem 


PROCEDURE:

Find that the given question is  one way slab or two way slab

=> to find whether one way or two way slab use the formulae: Ly/Lx>2  one way slab

  
=> if  Ly/Lx 2  then two way slab   

In one way slab the moment action is predominant along shorter span dimension therefore the design of one way slab is normally based on moments along shorter span.





NOTE: The examples followed are only simply supported one way slab but not any other continuous slab.


Determination of thickness of slab


                     ..........as per IS-456-2000 (cl 23.2.1, pg 37)

      i)Find d value and assume as 125 for further purpose

Caluclation of load


     write all the loads given in the question and find if any thing necessary
  calculate ultimate load = total load x F.O.S(factor of safety(1.5))

     Effective span le= live load+b             
                                le=live load+d
         the lesser value should be taken

check effective depth of the slab


Mud=wl2/8

Design moment value

   Mud=0.36 x fck x  Xumax/d x (1 - 0.42 x Xumax/d ) x bd2
                find d value from the above formulae
               if d<d provided(126)  
         so safe

Caluclation of reinforcement:

      Mud=0.87 x fy x Ast x (1-(Ast X fy)/(bd X fck)) x d  
                                         ----as per Is 456-2000(Anexure G)
    find Ast from above formulae

Minimum reinforcement   
                                           -------as per Is 456-2000(cl 26.5.2.1)

Astmin=0.12% x b x d  (here d is overall depth)
          Astprovided >Astmin      

Provide spacing for the Ast and  find number of bars required

(Spacing) S= (b X Ï€/( 4)  X  Bars(10 or 8 or 16 or 20 etc))/Ast

Reinforcement along long span direction

      For Astmin we have to calculate spacing
(Spacing) S= (b X Ï€/( 4)  X  Bars(10 or 8 or 16 or 20 etc)/Astmin

    The maximum spacing is 450mm as per Is 456-2000 (cl 26.3.3(b)  pg:46

Check for shear

    Usually shear effect in slab is very small the slab it self takes care of shear effect.
   first calculate Vu=(w X l)/2
Nominal shear stress (τv)=Vu/(b X d)
(Percentage of steel)Pt=(100 X Ast)/(b X  d)
   find the Ï„c value by using interpolation concept
as per IS 456-2000(cl 21.1.1) pg:72
For slab design shear =K x Ï„c
          if design shear strength > Ï„v


Then no shear shear reinforcement is needed

Check for deflection:

     Pt=(100 X Ast)/(b X  d)
            L/d=20 x M.F(Modification factor)—as per fig 4 pg:38
     then find d value
Check for development length:

      Ld=(0.87 X fy X d)/(4 X Ï„ bd)

Detailing:   Detailed view of the slab.



=> Below is an example problem of One way slab and you can follow the above procedure to solve this problem, and also the solution of the below problem is given and refer that problem and solve it.

=> If you have any query you can free to comment in the bottom comment bar, we are here to help you. 



Problem :          

àDesign a simply supported one way slab for a room with clear dimensions of 3.5mx8m.The support having width of 250mm.let us take a live load of 3kN/mand floor finish of 1.5KN/m2 ,use M20 mix and Fe415 grade steel?
Sol:


Given data

                      Live load =3.5 KN/M2
                       floor finish=1.5KN/M2
                    use M20 mix & Fe415 steel
              Edge support =250mm width


àFind whether the given question is one way or  two way slab
            Here ly=8m &  lx=3.5m
                                  Ly/Lx>2 ------ 8/(3.5)>2
             so given problem is one way slab
  
       3.5m=3500mm      & 8m=8000mm

Note:
=> If Ly/Lx > 2 then the given problem is one way slab.
=> If Ly/Lx < 2 then the given problem is Two way slab.

àDeflection criteria
 as per cl 23.2.1   pg:137
                      L/d=20 for simply supported beam
 here we are using  Fe415 steel
       from pg:38, fig 4 find modification factor
l/d=20 X 0.8
                            d=3500/(20 X 0.8) = 218.75
How ever d=126mm (effective depth)
Let us use 8mm diameter bars  and 20mm clear span
      Overall depth=125+8/2+20 =149mm ~ 150mm 
d=126mm
D=150mm


àCaluclation of one way slab load

    self weight of the slab= D X ɤ                                        D=150mm=0.15m
                                            =0.15 x 25         É¤=25 (assume)
                                            =3.75 KN/M2
      floor finish = 1.5 KN/M2
       Live load =3.5 KN/M2
       Total load =3.75+1.5+3.5=8.75 KN/M2
        Dead load = 3.75+1.5= 5.25 KN/M2
Ultimate load (Wu)= Total Load x F.O.S = 8.75 x1.5= 13.125 KN/M
      Effective span(le)= live load + d = 3.5+0.15= 3.65m
                               (le)= live load + b = 3.5+0.25= 3.75 m  
      le=lesser value  


àCheck for effective depth of the one way slab
    Mud=wl2/8 =(13.125 X (3.65)2)/8 =21.85 KN-M
Design moment value
Mud=0.36 x fck x  Xumax/d x (1 - 0.42 x Xumax/d ) x bd2
21.85 X106=0.36 x 20 x 0.48x (1 - 0.42 x 0.48) x 1000 x d2
                       d=89mm  < dprovided (126mm)

                      so safe
Note: When d is greater than dprovided then the one way slab design criteria fails, so you have to re assume the depth of the slab once again and re calculate the effective depth of the slab and check up to then, d is less than dprovided.


àCaluclation of reinforcement

 Mud=0.87 x fy x Ast x (1-(Ast X fy)/(bd X fck)) x d
21.85=0.87 x 415 x Ast x (1-(Ast X 415)/(1000 X 126  X 20)) x 126
            Ast=525.82 MM2


     Minimum reinforcement:-      as per cl 26.5.2.1     pg:48

        Astmin=0.12/100 x 1000 x 150
        Astmin=180 mm2
              Ast provided > Astmin
                                                    so safe      
   Spacing of 10mm dia bars
S= (1000X Ï€/( 4)  X  102 )/525.5= 149.36mm
    so provide 10mm dia bars @145mm c/c
            number of bars= 1000/145= 6.69 ~ 7 bars


àReinforcement along long span direction
      To arrest the cracks due to temperature and shrinkage effects minimum reinforcement is to be provided along longer span direction.
        Astmin=180 mm2
  S= S= (1000 X Ï€/( 4)  X102   )/180 =436.33 mm
  The max spacing is 450 mm or 5 X125 =625,  so provide 10mm bars @400 c/c



àCheck for shear

Note: Usually shear effect in slab is very small the slab it self takes care of shear effect.
   first calculate 
                 Vu=(w X l)/2  =(13.125 X 3.65)/2= 23.95 KN
Nominal shear stress (τv)=
    =Vu/(b x d)=(23.95 X 103)/(1000 X 125) =0.19N/MM2

Pt=(100 X 549.7)/(1000 X 125) =0.439%     
                                          as per table 19 page :73   …,as M20

By interpolation concept                   pt= 0.25            Ï„c= 0.36
                                                                pt= 0.5              Ï„c= 0.48

Ï„c=0.36+ (0.48-0.36)/(0.5-0.25) x(0.439-0.25)
Τc= 0.45 N/MM2
 For slab design strength = K x Ï„c   = 1.3 x 0.45  =0.58 > Ï„v
               so no need of shear reinforcement



àCheck for deflection

Pt=(100 X Ast)/(bxd) = (100 X 549.7 )/(1000 X 125)=0.439%
L/d=20 x M.F                               M.F=1.2
          d= 3650/(20 X 1.2) =140.38           
                             le=3.65m=3650mm


 Ã Check for development length of the slab
 Ld=(0.87 X fy X d)/(4 X Ï„ bd)= (0.87X 415 X 10)/(4 X1.2 X1.6)
=470 mm


Detailing:


=> Detailing should be done in two spans that is, in Shorter span and Longer span.
=> First of all you should draw the detailing for shorter span.
=> Second you have to draw the detailing for longer span.
=> Detailing should be drawn carefully by using the values what you got in the above problem.



Conclusion:
=> The procedure should be read first before solving the problem 
=> Detailing of the problem should be drawn carefully.



Next Post Previous Post

Cookies Consent

This website uses cookies to analyze traffic and offer you a better Browsing Experience. By using our website.

Learn More